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a  b  s  t  r  a  c  t

Non-native  aggregation  is  a common  concern  during  therapeutic  protein  product  development  and  man-
ufacturing,  particularly  for liquid  dosage  forms.  Because  aggregates  are  often  net  irreversible  under  the
conditions  that  they  form,  controlling  aggregate  levels  requires  control  of aggregation  rates  across  a
range  of  solution  conditions.  Rational  design  of  product  formulation(s)  would  therefore  benefit  greatly
eywords:
rotein stability
on-native aggregation
odeling

iotechnology

from methods  to accurately  predict  aggregation  rates.  This  article  focuses  on  the  principles  underlying
current  rate-prediction  approaches  for non-native  aggregation,  the  limitations  and  strengths  of  different
approaches,  and  illustrative  examples  from  the  authors’  laboratories.  The  analysis  highlights  a  number
of reasons  why  accurate  prediction  of  aggregation  rates  remains  an outstanding  challenge,  and  suggests
some of  the  important  areas  for  research  to ultimately  enable  improved  predictive  capabilities  in  the
future.
. Introduction

Control of protein aggregation is a ubiquitous concern during
urification, formulation, and manufacture of therapeutic protein
roducts (Das and Nema, 2008; Mahler et al., 2009; Wang, 2005;
ang and Roberts, 2010; Weiss et al., 2009). Non-native aggre-

ates, hereafter referred to simply as aggregates, are typically net
rreversible under the conditions they form. As such, the kinetics
r rates of aggregate formation are of primary interest, as these
etermine aggregate levels over a given period of time in different
hysical environments, protein concentrations, and temperatures
xperienced by a protein throughout its processing, shipping, and
torage.

At a minimum, aggregates represent a process impurity and/or
egradation product that must be controlled at relatively low lev-
ls throughout manufacture and during product storage (Cleland
t al., 1993). Recent concerns have also been raised regarding the
otential immunogenicity of aggregates, particularly those that
re composed of multiple folded or partially folded monomers;
lthough the precise mechanism(s) that make a particular aggre-

ate size, morphology, and/or structure more or less immunogenic
emains uncertain (Filipe et al., 2010). As such, it is also of interest
o differentiate between rates of formation for aggregates rang-
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ing from small oligomers to soluble high molecular-weight (HMW)
aggregates and larger, effectively insoluble particles.

In this context, the term soluble denotes species that are molec-
ularly dispersed in solution, while insoluble is used here to denote
aggregates that have coalesced into a macro- or micro-phase sep-
arated domains or particles, as it has also been shown recently
that protein aggregates can reversibly transition between soluble
and “insoluble” or “condensed” states (Brummitt et al., 2011a,b;
Kroetsch et al., unpublished). Alternatively, one can usefully differ-
entiate aggregates based on some measure of size and the analytical
methods relevant to different size ranges (Mahler et al., 2009;
Sharma and Kalonia, 2010). The former is utilized in this review,
as aggregate solubility is more straightforward than the physical
dimensions of an aggregate to relate to rates of monomer loss
(Roberts, 2007).

Assuming aggregation is the fastest degradation route, product
shelf life and the effective rate coefficient of monomer loss (kobs) are
then equivalent quantities when one is concerned with relatively
low percent conversion of monomer to aggregate (< approx. 10%)
(Weiss et al., 2009). As such, aggregation rates, shelf life, and kobs are
used interchangeably throughout this review. A primary goal of this
review is to summarize the principles, strengths, and weaknesses
of a number of different approaches to predict aggregation rates
– either qualitatively or quantitatively – as a function of protein

sequence/structure and solution environment. It is not practical
within space constraints to exhaustively review all experimental
examples or possible approaches. To the extent possible, illustra-
tive examples from the authors’ laboratories are included here to

dx.doi.org/10.1016/j.ijpharm.2011.03.064
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:cjr@udel.edu
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ig. 1. Schematic representation of some of the key steps in non-native aggregation
f  aggregation. Adapted from Li et al. (2010)..

ighlight some of the key conclusions and principles throughout
he report.

In what follows below, aggregation pathways are briefly
eviewed in terms of features that appear to be common across

 wide range of proteins. General classifications or categories of
urrent approaches for predicting aggregation rates are then pre-
ented, followed by an outline of the organization and scope of the
emainder of the article.

.1. Overview of aggregation pathways

Assuming one is starting with a system predominantly com-
osed of native or folded monomeric protein, aggregation at least
utatively involves some or all of the following steps, depend-

ng on the size and/or solubility of the resulting aggregates
Roberts, 2007): (1) some degree of unfolding of monomeric
rotein; (2) reversible self association of folded or (partially)
nfolded monomers; (3) structural or conformational rearrange-
ent within otherwise reversible oligomers, so as to form key

tabilizing inter-protein contacts that make the resulting aggregate
ucleus net irreversible; (4) growth of nuclei or other pre-existing
ggregates via monomer addition; (5) growth of aggregates via
ggregate–aggregate coalescence to form larger soluble (molecu-
arly dispersed) aggregates; (6) or growth via phase-separation to
orm insoluble aggregates. Fig. 1 is adapted from Li et al. (2010) and
chematically illustrates the interplay between each of stages (1)
o (6) as described above.

A number of important consequences follow from multi-stage
ggregation pathways such as that depicted in Fig. 1. Because aggre-
ation involves multiple stages and a number of these occur in
arallel rather than in sequence, the measured rates of aggregation
an depend on more than one rate-limiting step simultaneously,
nd can depend on what quantity or quantities are being mon-
tored experimentally. An example of the former feature is that

onomer loss depends not only on the rate of nucleation of new
ggregates, but also on the rate of aggregate growth via monomer
ddition, and/or on the rate of aggregate coalescence if aggregates
emain soluble—however, it depends primarily on nucleation rates
f the resulting aggregates are insoluble (Roberts, 2007). Concerns
ver the method(s) used to monitor aggregation are exemplified by
rrors and ambiguities in aggregation rates when assays are used
hat are only able to detect large/insoluble aggregates – e.g., optical
ensity or visual inspection (Morris et al., 2008; Lee et al., 2007a;
oberts, 2007) – or only aggregates that have a specific underlying
econdary structure that binds a particular ligand or dye molecule.
his is not to dismiss the utility of such assays for qualitative and

emi-quantitative product quality assessments, but rather to high-
ight the need for alternatives or orthogonal metrics or validation
f one wishes to accurately quantify aggregation rates in an unam-
iguous manner.
e of which are the primary focus of different approaches to predicting relative rates

Although the above concerns are often overlooked by some
researchers, the limitations of such assays are now reasonably
well appreciated in the literature regarding pharmaceutical prod-
uct development. As a result, the most common approach to
quantify aggregation rates is to monitor changes in concentration
(w/v basis) for monomers, small oligomers, and higher molecu-
lar weight soluble aggregates – most commonly via size-exclusion
chromatography, although there is increasing interest in using
alternative approaches (Gabrielson et al., 2006; Goetz et al., 2004;
He et al., 2010; Liu et al., 2006). Quantifying aggregation rates in an
unambiguous way  for systems in which visible particles form with
seemingly negligible loss of protein mass from solution remains
an outstanding challenge, although subvisible particulate testing
by light obscuration is a mandatory test in stability assessment of
clinical supplies of therapeutic proteins, as is visual inspection (Das
and Nema, 2008). In the remainder of this review, aggregation rates
(�agg) will be quantified in terms of the mass fraction of protein that
has been converted to aggregate of some type. The mass fraction
of total protein that is monomer is denoted as m,  while the frac-
tion that exists as soluble or insoluble aggregates is then 1 − m.
Aggregation rates can then be expressed equivalently in terms of
kobs for a given total protein concentration (c0), solvent condition,
temperature (T) and pressure (p) by

�agg = −dm

dt
= kobsm˛ (1)

with t denoting the incubation time for a given sample, and  ̨ the
effective reaction order. For most pharmaceutical applications, m
will be close to one, and therefore Eq. (1) can be solved for any
physically reasonable value of  ̨ to give �agg ≈ kobs. In what follows,
�agg and kobs are therefore used interchangeably and have units of
inverse time.

It follows from Fig. 1 that there are multiple factors that con-
tribute to kobs. At a minimum, kobs involves contributions from the
process(es) of unfolding. More generally, aggregation rates may
have contributions from unfolding, “weak” self-association, and
formation of “strong” inter-protein contacts via structural motifs
such as inter-protein beta sheets. As explained in more detail in
subsequent sections, many common approaches to qualitatively or
quantitatively predict aggregation rates can be categorized based
on which of these contributions they attempt to capture. Although
not shown explicitly in Fig. 1, not all of the “reactions” necessarily
need occur in bulk solution. In addition to changes in solution con-
ditions such as pH, ionic strength, and excipient concentrations, the
interaction of proteins with bulk interfaces can in principle affect
one or more stages in Fig. 1 (Wang and Roberts, 2010). Much of the

physics that are discussed below are relevant in both cases, with
additional considerations discussed briefly in the final section with
regards to the potential importance of protein adsorption to bulk
interfaces.
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.2. Organization and scope

Sec. 2–4 summarize the underlying principles behind different
ualitative and semi-quantitative approaches to stability predic-
ion based on the different stages in Fig. 1. Sec. 5 focuses more
pecifically on the question of quantitative rate prediction, high-
ighting a number of outstanding challenges that make this one of
he long-standing problems in the field. Also included is a brief dis-
ussion of practical aspects, advantages, and limitations of different
pproaches. Where possible within space constraints, illustrative
xamples are provided from the literature to highlight the level of
rediction – or lack thereof – that available approaches can cur-
ently provide.

. Structural–conformational stability and perturbations

.1. Underlying principles

At extremes of T and p near or above the midpoint unfolding
emperature or pressure, unfolding is often found to be a rate-
imiting step for aggregation (Sanchez-Ruiz et al., 1988; Kendrick
t al., 1998). At more moderate conditions, �agg is expected to
e significantly slower than rates of refolding, and therefore the
hermodynamics rather than the kinetics of unfolding are instead
xpected to contribute to kobs (Roberts et al., 2003; Roberts, 2007;
eiss et al., 2009). Qualitatively, this follows because the thermo-

ynamics of stage (1) in Fig. 1 then dictate what fraction of the total
onomer population exist in an aggregation-prone or “reactive”

tate R at a given moment in time. Thus, the greater the free energy
f unfolding (�Gun) to form R monomers from folded monomers,
he lower the concentration [R], and therefore the lower the rate of
ggregation.

There are a multiple approaches to experimentally determining
Gun, almost all of which involve changing the sample condi-

ions of T, p, and/or chemical denaturant concentration so as
o shift the folded–unfolded equilibrium towards the unfolded
tate(s). The shift from folded to unfolded state(s) is then moni-
ored spectroscopically or calorimetrically (Marky and Breslauer,
987; Privalov, 1979, 1982). If the unfolding transition(s) can be
raversed reversibly and slowly enough to allow equilibrium to
e achieved throughout the transition, then �Gun can be deter-
ined and extrapolated back to the folding-favoring conditions

hat are typically of most interest for therapeutic protein prod-
cts and protein manufacturing. To a first approximation, the
emperature at which �Gun = 0 for a given folding–unfolding tran-
ition is that for the corresponding local maximum in differential
canning calorimetry (DSC), or that for the midpoint between
lateau spectroscopic signals. This temperature is denoted by TM

or each transition. For reasons discussed below, TM is often only an
pproximate location for �Gun = 0. This notwithstanding, increas-
ng TM then corresponds roughly to an increase in �Gun for a
iven unfolding transition; and therefore corresponds to a smaller
opulation of the relevant unfolded species at a given T below
M.

.2. Thermal unfolding: thermodynamics and kinetics near TM

In practice, achieving equilibrium during chemically or ther-
ally promoted unfolding is not necessarily possible, because

opulating unfolded state(s) increases the rate of aggregation
or aggregation-prone proteins. As most therapeutic proteins are

ggregation-prone via at least some of their partially or fully
nfolded conformational states, it is unusual to be able to mea-
ure robust values of �Gun, or to measure values of TM that reflect
nly the unfolding thermodynamics (Remmele, 2005). To further
Pharmaceutics 418 (2011) 318– 333

complicate the analysis, multi-domain proteins often have multiple
unfolding transitions and it is not always possible for experimental
techniques to deconvolute multiple unfolding transitions (Flaugh
et al., 2005a,b; Freire et al., 1992). In addition, for multi-domain pro-
teins it is likely that only a relatively small fraction of the protein
sequence is aggregation prone (see also Sec. 4). Therefore, increas-
ing or decreasing the unfolding free energy for a given domain may
have no effect on aggregation rates if that domain is not involved
in forming key inter-protein contacts in the aggregates.

The above complications notwithstanding, if one is consid-
ering an unfolding transition that populates aggregation-prone
monomers, TM for that transition can still be at least qualitatively
useful in predicting relative aggregation rates for a given protein
as a function of solvent conditions (e.g., pH and excipient con-
centrations). This follows because as aggregation proceeds during
thermal unfolding, the aggregation-prone or reactive (R) monomer
population is continuously being depleted as monomers convert to
aggregates. However, by Le Chatelier’s principle the depletion of R
monomers shifts the F–R equilibrium in Fig. 1 towards R, and thus
the “midpoint” temperature at which approximately fifty percent of
the protein has been converted from F monomers to either unfolded
or aggregated protein (i.e., TM) shifts to lower values (Sanchez-Ruiz,
1992). As a result, solution conditions that have lower TM values for
the transition that exposes aggregation-prone sequences tend to at
least qualitatively correlate with higher aggregation rates at T less
than approximately TM.

Given that it is not known a priori which unfolding transition(s)
correspond to the region(s) of a protein that is(are) aggregation
prone, there remains the question of how to know which TM

value(s) are potentially relevant for predicting relative aggregation
rates at lower temperatures. There are a number of approaches
that have shown some level of success in this regard. One is to
take advantage of the fact that unfolding transitions will show a
pronounced dependence on thermal scan rate if aggregation is con-
voluting with unfolding during DSC scans, and TM will shift to higher
values with increasing scan rate; however, this can be misleading
since TM values also shift in this manner if the scan rate is too fast
compared to folding–unfolding rates in the absence of aggregation
(Lepock et al., 1992). Another is to assess the reversibility of a given
unfolding transition via heating partially or completely through the
unfolding transition, and assess the extent of re-folding via subse-
quent reheating of the same sample(s) in DSC (Remmele et al., 1999;
Sahin et al., 2010). As noted earlier, in practice most unfolding tran-
sitions during thermal scanning are net irreversible if they populate
aggregation-prone conformers. Thus reversibility (or lack thereof)
may  inform whether a given endotherm is related to aggregation.
It does not, however, also assure that TM alone will be indicative of
relative aggregation rates (see also Sec. 5), as a lack of reversibility
can be due to other factors—e.g., slow refolding, sample misfold-
ing without aggregation, or lack of a chaperone needed for proper
refolding from a fully unfolded state.

Alternatively, one can simply monitor aggregation chromato-
graphically for samples that have been thermally scanned to
different temperatures, and directly align the unfolding transi-
tion(s) with the loss of monomer (Sahin et al., 2010; Brummitt
et al., 2011a). An example is shown in Fig. 2 for an IgG1 antibody
(Sahin et al., 2010). Fig. 2 shows the overlay of a DSC thermogram
(apparent heat capacity vs. T) with the corresponding monomer loss
profile as a function of T, where the thermal scan rate is matched
between the two  experiments. The lower-TM endotherm does not
populate aggregation-prone (partially) unfolded species, and is
reversible upon repeated heating and cooling through just that

transition. The higher-TM endotherm populates aggregation-prone
monomers, and it is the TM for this transition that is reasonably
predictive of aggregation rates as a function of solution conditions
for this antibody (Sahin et al., 2010) (see also, Sec. 5).
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entration from SEC (symbols) for an IgG1 antibody during thermal scanning. The
ownturn in monomer concentration corresponds to the onset of the higher-TM

nfolding event(s). Adapted from Sahin et al. (2010).

The illustration in Fig. 2 helps to highlight at least one major lim-
tation of TM-based approaches; when one deals with multi-domain
roteins there are typically multiple TM values—i.e., multiple peaks
nd/or peaks with shoulders that indicate multiple unfolding tran-
itions. As noted above, how can one know a priori which transition
orresponds to unfolding of the aggregation-prone domain(s)? Fur-
hermore, changes in solution conditions do not always affect all
hermal transitions in the same way for a given protein. Thus,
pproaches based on TM alone are often inconclusive even if one
s interested only in qualitatively ranking formulation conditions.
imilarly, candidate selection and optimization of protein sequence
o minimize aggregation rates should not rely solely on TM or
imilar approaches (see also, Sec. 5). Supplementing TM-based
easurements with thermal-scanning monomer-loss experiments

uch as in Fig. 2 can help to alleviate this problem, but such
n approach has only been shown recently (Sahin et al., 2010;
rummitt et al., 2011a).

.3. Structural perturbations far from TM

The same mechanistic reasoning that underlies TM-based
pproaches to qualitatively predict (i.e., to rank) aggregation rates
or a given protein also motivates approaches based on screening
ormulation conditions for those that minimize structural pertur-
ations to the folded state at the target storage temperature of

nterest. That is, if a particular choice of solution conditions leads
o a detectable structural perturbation of the otherwise folded

onomer species then this potentially exposes aggregation-prone
olypeptide sequences or regions of the protein. This is a poten-
ially attractive approach in that it allows one to focus on lower
emperatures (e.g., room temperature) and short time scales (e.g.,
ours to days to weeks) for the experimental screening conditions.

The major shortcomings of this approach are at least two-fold.
he first is similar to that noted above for TM-based approaches:
f one does not know a priori what region of the protein is
ggregation prone, how can one deduce whether a detected struc-
ural perturbation is relevant from the perspective of populating
ggregation-prone monomers? If one must take the time to mea-
ure aggregation rates under “real-time” storage conditions in
rder to confirm that a structural change was relevant, then this
efeats the purpose of “predicting” rates from a structural per-
urbation approach; although the knowledge that such structural
hanges correlate with aggregation may  still be useful from a peda-

ogical and qualitative mechanistic point of view (Raso et al., 2005).
owever, in order to be truly predictive in a practical sense, one
eeds a way to know which structural changes are relevant to
ggregation, and then also to be able to measure those changes
Pharmaceutics 418 (2011) 318– 333 321

unambiguously; this remains an open challenge and active area of
research (cf., Sec. 4 and 5).

The second major shortcoming of structural-perturbation
approaches is the limitation of available techniques to probe per-
turbations that are either rare or too short-lived to be detectable.
Experimentally, circular dichroism (CD), intrinsic/extrinsic fluores-
cence (FL), infrared (IR) or other spectroscopies are commonly used
to detect structural perturbations (Weiss et al., 2009). However,
none of these techniques will likely be able to detect a struc-
turally perturbed species (unless largely unfolded) that populates
less than approximately 1–10 percent of the total protein pop-
ulation, depending the degree of structural perturbation and/or
sensitivity of the technique. Thus, it is fundamentally incorrect
to conclude generally that a lack of detectable difference in a
population-averaged spectrum is evidence that a change in for-
mulation condition does not significantly alter the population of
partially or fully unfolded monomers (Roberts, 2007); similarly,
one cannot argue that lying far below TM means that the popula-
tion of (partially) unfolded monomers is zero or negligible– it may
simply be below the detection limit(s) for the assay of interest. Cer-
tain assays are more sensitive to small or local perturbations – e.g.,
intrinsic/extrinsic fluorescence – and so may  be able to extend the
detection thresholds to lower (but still finite) limits (Maas et al.,
2007; Demeule et al., 2009; Gabellieri and Strambini, 2006).

As an example, if a change in formulation condition or pro-
tein sequence causes the concentration of R monomers to increase
from 0.001% to 0.01% this will be experimentally undetectable for
practical purposes. However, the concentration of “reactants” has
changed by an order of magnitude and the rate of aggregation
would then change by this amount or more, depending on the
effective reaction order. This is the expected situation on general
thermodynamic grounds whenever one operates at temperatures
well below TM, as the total concentration of R monomers will
be much smaller than that of the fully folded species (Roberts,
2007). As a result, approaches that rely on structural perturba-
tions far from TM may  be useful in eliminating some of the most
aggregation-prone conditions. However, they may  be of little use
in discriminating between different conditions that are all reason-
ably stable on the time scale of days to weeks, but have significantly
different aggregation rates when measured on month to year
time scales. Even if one is able to identify more sensitive tech-
niques for detection of structural perturbations, this does not assure
those perturbations populate aggregation-prone species and will
be indicative of relative aggregation rates upon storage.

3. “Weak/reversible” protein–protein interactions

3.1. Underlying principles

All molecules in a solution interact with their neighbors; at a
minimum these are so-called steric repulsions that are present for
all real molecules. In addition to steric repulsions, all molecules
experience London dispersion or van der Waals (vdW) attractions
to some degree. The remaining interactions that are significant
for most aqueous solutions are hydrogen bonding (attractions),
hydrophobically driven attractions, and electrostatic attractions
and repulsions (Israelachvili, 1991).

Protein–protein interactions in solution can typically be
grouped into two  categories: “strong” interactions that result
in specific “binding” between monomers that compose native
multimers such as trans-thyretin (Palaninathan et al., 2008) and

arc-repressor (Robinson et al., 1997); and relatively “weak” or
non-specific, colloidal interactions that influence the local con-
centration of protein in solution (Weiss et al., 2009; Chi et al.,
2003a; Israelachvili, 1991). In this context, colloidal interactions
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Fig. 3. Illustrative radial distribution functions g(r) for a purely steric or HS repulsion
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efer to the combination of attractive and repulsive interactions
oted above, in which there are not a small number highly specific
lock-and-key” structures that give rise to stable, native multimers.
ather, many different arrangements between two or more pro-
eins have similar free energies, and are not separated from each
ther by large free energy barriers.

Although colloidal interactions are sometimes referred to within
he context of oligomer formation, this may  portray a false
icture in which there is a definable “complex” for such self-
ssociated states. A more useful approach may  be to consider such
rotein–protein interactions in the context of preferential exclu-
ion and preferential accumulation, such as that used to explain
rotein–cosolute interactions (Timasheff, 1993). If one considers
he spatial distribution of proteins within the vicinity of a selected
eference protein, protein–protein interactions that are favorable
unfavorable) relative to protein–solvent interactions result in pref-
rential accumulation (exclusion) of proteins compared to solvent
round a given reference protein.

Fig. 3 illustrates this concept with three illustrative examples of
rotein–protein radial distribution functions (g22(r)) as a function
f the center-to-center distance (r) between two proteins. g22(r)
ives the local concentration of protein, divided by the bulk con-
entration, at a distance r from the center of a reference protein.
hat is, g22(r) > 1 indicates a local protein concentration at r that is
igher than the bulk concentration, and vice versa. If two proteins

nteract with only an effective hard-sphere (HS) or purely steric
epulsion, g22(r) appears as in Fig. 3A, with zero probability for r < d
ince the proteins cannot overlap, with d defined as the effective HS
iameter of single protein. Preferential accumulation is illustrated
y Fig. 3B, with higher local concentrations within the immediate
icinity of the central protein—i.e., for r/d between 1 and approxi-
ately 2. Preferential exclusion is illustrated in Fig. 3C, with local

oncentrations that are lower than the bulk concentration for r/d
xtending beyond the steric-repulsion distance.

.2. 2nd Osmotic virial coefficient (B22)

The osmotic second virial coefficient (B22) is accessible exper-
mentally via experiments such as light or neutron scattering
Velev et al., 1998), equilibrium analytical ultracentrifugation,
elf-interaction chromatography (Tessier et al., 2002), and classic
smotic pressure experiments (Alford et al., 2008). B22 provides an
ntegrated measure of g22(r) via its statistical mechanical definition
Ben Naim, 1992):

22 = BHS
22 − 1

2

∫ ∞

r/d=1

(g22(r) − 1)4�r2 dr (2)

In Eq. (2),  BHS
22 denotes the HS value for B22. Rigorously, Eq. (2) is

ccurate only in the limit of low protein concentration (Ben Naim,
992). If one works at high enough protein concentrations that
ost proteins interact closely with multiple proteins simultane-

usly – e.g., “crowded” conditions (Minton, 2008) – B22 must be
eplaced with the corresponding Kirkwood-Buff integral (G22) that
pplies at any protein concentration (Ben Naim, 1992; Blanco et al.,
n preparation). The qualitative concepts and discussion below are
ndependent of whether B22 or G22 is the more appropriate quantity
or a given range of protein concentrations.

Eq. (2) is often represented in an equivalent form by replacing
22(r) with exp(−W22(r)/kBT), with W22(r) denoting the potential
f mean force (Ben Naim, 1992; McQuarrie, 1976) or the reversible
ork required to bring two proteins together from infinite separa-
ion to a distance r, with all protein orientations averaged for each
rotein, and all solvent degrees of freedom averaged for each value
f r between the two proteins. Given the discussion and definitions
bove in which purely steric interactions are taken as the reference
(A)  or for steric repulsions plus attractions (B) or non-steric repulsions (C) leading
to  higher or local concentrations of protein, respectively.

state, B22 > BHS
22 corresponds to preferential exclusion of proteins

in the vicinity of each other, and vice versa for B22 < BHS
22 . In addi-

HS
tion, the discussion above highlights that B22 = B22 may  be a more
appropriate reference point than B22 = 0 for delineating between
net attractive versus repulsive conditions in the context of protein
aggregation kinetics (Weiss et al., 2009; Sahin et al., 2010).
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Fig. 4. Percent transmittance at 650 nm as a function of pH during titration from
low  to high pH (downward triangles) and upon reversal and titration from high to
low pH (upward triangles) for aggregates that were created as soluble species at low
pH before the titrations depicted above. Differences in the location of the gray and
black symbols are putatively due to differences in the total protein concentration.
Curves are empirical fits as guides to the eye. Inset shows Z* values at selected pH
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In the context of the above discussion, defining a reduced or
imensionless virial coefficient (b∗

2) as

∗
2 = B22

BHS
22

− 1 (3)

hen gives that positive (negative) b∗
2 corresponds to local protein

oncentrations in the vicinity of the protein surface that are lower
higher) than the bulk protein concentration. As depicted in Fig. 1,
ucleation requires proteins to first approach each other closely.
his is more (less) likely to occur if the local concentration of pro-
eins is higher (lower). Therefore, conditions of positive (negative)
∗
2 are expected to correspond to slower (faster) aggregation rates
f all other factors are held fixed. However, in practice it may  be
ifficult to keep those other factors fixed while altering b∗

2 (see also
ec. 5).

.3. Effective charge (Z*)

The effective charge (Z*) on a protein reflects the combina-
ion of its molecular or raw charge (Z) plus any territorial ions
hat are loosely or strongly bound to the protein surface (Chase
nd Laue, 2008). Z* is the average charge that another protein
feels” as two proteins approach each other, not accounting for
nduced charge fluctuations that might, in principle, occur if one
s near the pKa of a given ionizable amino acid group on the pro-
ein surface (Yadav et al., 2010), and not accounting for highly
symmetric surface charge distributions (Neal et al., 1998). To

 first approximation, Z* gives an estimate of the magnitude of
lectrostatic repulsions between proteins. Z* can be determined
xperimentally by measuring the electrophoretic mobility and
racer diffusivity in free solution (Chase and Laue, 2008; Brummitt
t al., 2011b).  In principle, high Z* corresponds to strong electro-
tatic repulsions that enhance preferential exclusion and thereby
educe aggregation rates. Of course, protein–protein interactions
nclude non-electrostatic contributions that may  overwhelm elec-
rostatic repulsions, and so Z* is not a sole indicator of conditions
o maximize preferential exclusion by proteins for one another.

As noted above, Z* does not account for the spatial distribution
f charges on the protein surface; if that distribution is sufficiently
symmetric then it is possible that charged regions or patches
n one protein can have favorable electrostatic interactions with
ppositely charged patches on another protein, resulting in net
ttractive protein–protein interactions despite the proteins hav-
ng the same overall net charge. This situation can be identified
xperimentally, for example, by observing b∗

2 values that are nega-
ive at low ionic strength (low degree of charge screening) but that
ecome less negative with increasing ionic strength (Sahin et al.,
010).

Positive b∗
2 values can only occur if the net electrostatic interac-

ions between two proteins are repulsive, and therefore indicates
hat asymmetric, attractive charge–charge interactions are not
ominant (Sahin et al., 2010). In such cases b∗

2 might be reasonably
pproximated by modeling W22(r) with a screened electrostatic
olloidal potential such as (Jin et al., 2006)

W22(r)
∣∣
r>d

∼ (Z∗)2

r/d
exp

[
−�d

(
r

d
− 1

)]
(4)

here � is the inverse Debye screening length and is determined
y the concentration and valency of any free ions in solution
Israelachvili, 1991). Using Eqs. (2) and (3),  the definition of g22(r)
n terms of W22, and the definition BHS

22 = (2/3)�d3 one can express

∗
2 in terms of W22 as

∗
2 = −3

∫ ∞

r̃=1

(e−W22(r̃)/kBT − 1) r̃2 dr̃ (5)
values, illustrating that electrostatic repulsions are greatly reduced as the transition
from  soluble to insoluble aggregates is approached. From Brummitt et al. (2011b),
with permission.

where r̃ denotes the reduced distance r/d. Comparison of Eqs.
(4) and (5) shows that under conditions of strong net repul-
sions between proteins (b∗

2 � 1) it is reasonable to expect that
Z* and b∗

2 provide similar information to assess the magnitude of
monomer–monomer repulsions.

3.4. Protein–protein interactions and aggregate phase behavior

The above discussion focused on protein–protein interactions
from the perspective of monomer–monomer interactions. How-
ever, recent examples show that aggregate–aggregate interactions
can play an important role in determining whether aggregates
that form as molecular species such as dimers, oliogomer, or other
high-molecular-weight species will ultimately coalesce with one
another to form large, visible species. A strong correlation was
observed between b∗

2 and conditions of pH and [NaCl] that led to
soluble (molecularly dispersed) vs. insoluble (macroscopic) parti-
cles for ˛-chymotrypsinogen A (Li et al., 2010) as well as a series of
monoclonal antibodies (Sahin et al., 2010). Conditions with strong
electrostatic repulsions (b∗

2 � 1) maintained soluble aggregates
and limited aggregate growth, while conditions where electrostatic
repulsions were sufficiently suppressed by moving to higher pH
and/or higher ionic strength led ultimately to rapid coalescence of
aggregates to form large visible particles (Li et al., 2010; Sahin et al.,
2010).

A similar correlation was  also observed for a different IgG1
antibody, where increasing pH led to decreasing b∗

2 and a tran-
sition from soluble to insoluble aggregates. Fig. 4 illustrates this
by showing cloud point transitions from soluble (transparent) to
insoluble (hazy) solution conditions for this antibody as a function
of pH (Brummitt et al., 2011b). Monomers are soluble at all pH
conditions in Fig. 4, and the hysteresis loops show that the sharp
transition from soluble (high percent transmission, %T) to insolu-
ble (low %T) conditions is reversible. This example illustrates that
there is a thermodynamic basis for distinguishing between con-
ditions where aggregates are stable as molecularly dispersed (i.e.,

dissolved) species. As such, it appears that there is a fundamen-
tal distinction between soluble and insoluble aggregates that goes
beyond semantic arguments regarding what is detectable to the
naked eye. Furthermore, such results suggest that some formula-
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ion conditions are inherently more prone to particle (or particulate
atter) formation (Brummitt et al, 2011b; Sahin et al., unpub-

ished). Finally, the inset in Fig. 4 shows that the transition from
oluble to insoluble aggregates correlates strongly with the drop in
*; supporting the view that maximizing charge–charge repulsions
etween proteins can be beneficial by helping to prevent visible
article formation.

. “Strong/irreversible” protein–protein interactions

The definition of irreversible and strongly associated aggre-
ates depends on the type of assay used, and is generally based
n observing undissociated aggregates under conditions where
eakly-bound aggregates will disintegrate. Most commonly these

re aggregates detected by SE-HPLC, SDS polyacrylamide gel
lectrophoresis (PAGE), analytical flow-field-flow fractionation
AFFFF), and mass spectrometry (MS). When the protein com-
onents (monomer or fragments) form aggregates, if they are
ross-linked by covalent bonds it is likely that such species will
e detected in SDS-PAGE and MS  as well as when fractionated
y SE-HPLC or AFFFF. If the aggregates form simply by strong
on-covalent interactions (hydrophobic, hydrogen bonding and/or
lectrostatic), then it can be potentially detected by non-denaturing
ractionation conditions (SE-HPLC/AFFFF).

As discussed in later sections, experimental approaches such
s various stress have been applied by researchers to predict the
ropensity of aggregate formation. Although it is extremely chal-

enging to predict what type of aggregates (weakly bound, strongly
ound, covalent) might form from a given stress factor, it is gen-
rally recognized that formation of covalent aggregates may  be
nduced by chemical causes such as oxidants, free radicals, and
edox mediators.

Many computational approaches to predict strongly-bound
non-covalent) aggregates rely heavily on a single or a few
arameters—particularly the hydrophobicity of amino acids that
onstitute a given protein. The underlying principle of these
pproaches is that hydrophobic groups attract each other and
ave an inherent propensity to minimize exposure of hydropho-
ic surface to bulk solvent (water) and other hydrophilic groups.
epending on the 3-dimensional arrangement of the constituent
mino acids in a protein, such hydrophobic groups can be spa-
ially clustered to cooperatively provide a strong enough attractive
orce to keep two (or more) proteins monomers “glued” together.
he stability of aggregates formed by hydrophobic interactions is
xpected to be temperature dependent as hydrophobic interac-
ions are strongly temperature dependent—with model systems
xhibiting the greatest propensity for hydrophobic association
ear ambient temperature (Schellman, 1997; Rees and Robertson,
001); the physics underlying this temperature dependence also
lays a role in the observation that protein unfolding free energies
nd enthalpies are temperature dependent, due to its influence on
he heat capacity of unfolding (see also discussion of Non-Arrhenius
emperature Dependence in Sec. 5).

Several approaches focused on the hydrophobicity of exposed
mino acids residues have been used in predicting protein folding
athways and more recently for protein aggregation. The newer
pproaches (Chennamsetty et al., 2009, 2010; Wang et al., 2009)
nvolve a combination of hydrophobicity and structural predic-
ion, where structural prediction (using molecular simulation and
omology modeling) plays a critical role in measuring the fraction
f such hydrophobic residues that are exposed to solvent when

ispositioned throughout the three dimensional structure of a pro-
ein. A number of published reports and approaches (Caflisch, 2006;
ellmer et al., 2007) account the role of hydrophobic interactions to
redict formation of amyloid fibril or beta-sheet dominated aggre-
Pharmaceutics 418 (2011) 318– 333

gation processes in relatively small proteins, protein fragments,
or synthesized polypeptides. Although hydrophobicity calculations
based on amino acid sequence alone have clearly been useful
to identify potentially aggregation-prone regions in polypeptides
lacking substantial tertiary structure, it is not clear that such calcu-
lations will work well for larger, “foldable” proteins in which most
of the aggregation prone regions are protected from exposure to
solvent and (more importantly) contact with other proteins—and
these are often the proteins of most therapeutic relevance. An
additional and important limitation of current approaches that
do account for tertiary structure at some level is that they are
limited by the inherent experimental bias of crystal structure(s)
towards those which crystallize. NMR  structures include contribu-
tions from more than just those that are compatible with crystal
formation, however they report primarily the dominant conform-
ers in solution, and are limited in their ability to inform about
relatively disordered regions. As such, the structural information
from crystallography and/or NMR  is not expected to reflect rare
conformational fluctuations that may  be most relevant to form-
ing strong inter-protein contacts. This limitation notwithstanding,
unfortunately most therapeutic proteins do not have such struc-
tures available in atomic detail; this is particularly the case for
relatively large proteins such as antibodies and their conjugates.

In addition, burial and location of hydrophobic amino acids is
not the only factor in some available algorithms to predict aggre-
gation propensity. It is also balanced with the inherent beta-sheet
and empirical amyloid-formation propensities of different amino
acids in a number of the so-called “aggregation calculators” that
are available in the public domain (Conchillo-Sole et al., 2007;
Trovato et al., 2007; Fernandez-Escamilla et al., 2004; Wang et al.,
2009). The few amyloid structures known to date at a molecular
scale clearly indicate the importance of inter-peptide hydrogen
bonding as a stabilizing motif for “irreversible” or “stable” aggre-
gates, as well as the packing of side chains along the periphery
of the resulting (highly polymerized) aggregates (Eisenberg et al.,
2006; Nelson et al., 2005). While all amino acids are capable of
hydrogen bonding via their amide backbone, it appears that the
most aggregation prone are those that are able to form stabilizing
inter- (and intra-) peptide hydrogen bonds while also protecting
large “patches” of hydrophobic amino acids from solvent exposure,
and providing favorable side-chain packing without large electro-
static repulsions. Interestingly, these same principles are at the core
what drives protein folding (Chiti and Dobson, 2006; Laurence and
Middaugh, 2010). Thus, at some level one can view the problem of
prediction of (non-native) aggregation of proteins as a version of
the protein-folding problem; however an arguably more complex
one, in that one must allow for the pathways by which multiple
proteins simultaneously “misfold”, combine with one another, and
find a stable inter-protein “fold” within an aggregate (Laurence and
Middaugh, 2010). Presumably, advances in methods to predict the
pathways for folding of larger and larger proteins (i.e., multiple
polypeptide chains) will also benefit the prediction of aggregation
of proteins more generally. Although methods to predict aggrega-
tion “hot spots” from knowledge of the experimental “fold” within
the stabilizing core of aggregates exist (Eisenberg et al., 2006), these
have been designed and validated primarily for polypeptides and
small proteins thus far (Ivanova et al., 2006). While many available
studies focus primarily on aggregation proceeding via conversion
from native structures to non-native beta-sheet-rich structures,
alternative mechanisms may  also exist—notably domain-swapping
to form dimers or even multi-mers that retain much of their native
secondary structure but form strong non-native contacts between

domains on adjacent proteins (Rousseau et al., 2003).

As noted earlier, more recent approaches (Chennamsetty et al.,
2009, 2010; Wang et al., 2009) for aggregation prediction involves
computationally intensive simulations of larger proteins such as
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onoclonal antibodies to derive a structure that helps to calculate
urface-exposed regions. Chennamsetty et al. (2010) developed a
arameter they denoted as a spatial aggregation propensity (SAP)
ased on atomistic simulations of full antibody or fragments of the
ntibody to predict aggregation prone regions. This method calcu-
ates the effective, dynamically exposed hydrophobicity of a certain
atch on the protein surface that is used to determine critical
egions for aggregation in antibodies. The authors defined positive
AP values to correspond to hydrophobic regions or patches, with a
igh value of SAP indicating a highly exposed hydrophobic region,
hile a low value indicates a buried hydrophobic region. Larger

egions of high SAP were hypothesized to correspond to regions
nvolved in aggregate formation. The computational work was sup-
lemented by creating experimental mutants in certain high-SAP
egions by changing hydrophobic residues to hydrophilic. SE-HPLC
nd turbidity data of some of the mutants were reported to corre-
ate well with SAP prediction, while some of the mutants showed
nhanced aggregation contrary to prediction. It was  suggested that
he SAP prediction method could be used in early stages of antibody
election process improving stability.

Wang et al. (2009) used computational approaches to explore
he aggregation potential of monoclonal antibodies via cross or
xtended �-motifs—similar to those reported for amyloid-forming
roteins (Nelson et al., 2005; Jaroniec et al., 2002; Jones et al., 2003).
s much of the conserved sequences of monoclonal antibodies are
atively beta-sheet prone, it is possible that this predisposes them
o amyloid-like structures in aggregates; however, it is not clear
hether that is necessarily the case, as examples exist of natively
elical proteins that form amyloid-like aggregates (Pertinhez et al.,
001; Fändrich et al., 2001; Picotti et al., 2007; Weiss et al., 2007).
uch speculations notwithstanding, the analysis in Wang et al.
2009) focused on sequence-based prediction tools (TANGO and
AGE) to identify the potential aggregation-prone regions of sev-
ral antibodies. It should be noted that the TANGO and PAGE
ethods have been parameterized using data from amyloidogenic

eptides and proteins, hence these methods may  have bias towards
nding regions of amyloidogenic behavior. The common features
mong the aggregation-prone motifs found in both variable and
onstant domains were that they are rich in hydrophobic, aromatic
r glutamine/asparagine residues (Sanchez et al., 2005; Azriel and
azit, 2001) but relatively low in the density of charged residues.
dditionally, when the aggregation-prone regions predicted from
mino acid sequence were mapped on to the homology-modeled
hree-dimensional Fab structures, the ones in the complementary
etermining regions (CDRs) co-localized with the putative antigen
inding site. It remains to be seen if these predicted aggregation
rone regions actually correlate with any available experimental
ata of aggregation propensity.

As much of the discussion above highlights, prediction of actual,
uantitative rates – as opposed to ranking of relative rates or cor-
elating within an empirical data set – is not within the scope of
vailable algorithms or models for this stage of the aggregation
rocess. This is not surprising, as the stage(s) of aggregation that

nvolve the structural rearrangement of multiple proteins at once
s(are) arguably well beyond the limitations of even the most pow-
rful computational resources if one is to consider the problem in
tomistic detail (Choutko et al., 2011; Morra et al., 2008).

Experimentally, it is also not yet possible to directly monitor
he rate(s) of conversion from reversible, “weakly bound” clus-
ers to net irreversible, “tightly bound” aggregates (i.e., nuclei in
ig. 1). This follows because these species are too poorly popu-
ated and/or too short-lived to either be isolated easily or to be
onitored directly. However, in some cases it is reasonable to
xamine aggregates a posteriori in order to identify key amino acid
equences that compose the tightly bound “core” of the aggregates.
s noted above in the context of the “aggregation calculators”,
Pharmaceutics 418 (2011) 318– 333 325

the predicted “hot spots” in aggregation-prone proteins are often
only predictions—i.e., they are not actually verified experimentally
(Wang et al., 2009).

Experimental techniques that are typically employed to identify
“hot spots” of sequence or key regions/domains that help to sta-
bilize aggregates include: incomplete proteolysis (Ignatova et al.,
2007); scanning mutagenesis (Li et al., 2002); and a combination
of hydrogen-deuterium exchange (HDX), mass spectrometry (MS),
and aggregate dissociation plus proteolysis (Zhang et al., 2010;
Tobler and Fernandez, 2002). Incomplete proteolysis works on the
principle that any amino acids in (soluble) aggregates that are well
protected from proteases must be buried within the core of the
aggregate. Scanning mutagenesis uses exhaustive scanning of point
mutations across a stretch of amino acids in order to identify which
amino acid residue(s) most disrupt aggregate formation in the first
place. In practical terms, such an approach is limited to relatively
small proteins and polypeptides.

HDX-MS with dissociation and proteolysis is based on the fol-
lowing strategy (Tobler and Fernandez, 2002; Zhang et al., 2010).
Pre-formed aggregates in hydrogenated solvent are first incubated
with deuterated solvent for different periods of time, to allow
solvent-exposed amide backbone protons to exchange with deu-
terium. After selected exchange times, samples are placed into
acidic solutions with high concentrations of urea or guanidinium
salts to simultaneously quench HDX and disrupt any non-covalent
inter- and intra-protein contacts. After a short period of time to
allow dissociation and unfolding of protein chains, but not long
enough to allow significant HD back-exchange, samples are incom-
pletely proteolyzed into small polypeptide fragments and analyzed
with MS  to quantify the number of exchanged amide protons. These
fragments or reporter peptides then typically fall into one of three
categories depending on their solvent exposure (i.e., their acces-
sibility to HDX): (i) less solvent exposed in the aggregate than in
the folded monomer; (ii) equally or similarly solvent exposed in
the aggregate and folded monomer; (iii) more solvent exposed in
the aggregate than the folded state (Tobler and Fernandez, 2002;
Zhang et al., 2010).

Amino acids that fall into category (i) are interpreted to have
become buried within a tightly bound “core” of inter-protein con-
tacts. Amino acids in category (ii) could also be involved in such a
“core” region, but could instead simply lie in a region of the pro-
tein that did not unfold as part of the aggregation process. As such,
the role of amino acids in category (ii) remains ambiguous from
this technique alone. Amino acids in category (iii) have become
more exposed to solvent via aggregation, and thus are not likely to
not participate in strong inter-protein contacts within aggregates.
An illustrative example of the results of such as study is shown in
Fig. 5 for aggregates of the globular protein ˛-chymotrypsinogen A
(aCgn), adapted from Zhang et al. (2010).

Fig. 5 shows the FASTA sequence of aCgn numbered from N- to C-
terminus. The bold red letters show the peptide sequences that are
even more protected from HDX in the aggregate than they are in the
folded state (i.e., category (i) above). These provide an experimental
measure of the “hot spots” for aggregate formation that is inde-
pendent of any computational predictions. The colored solid lines
above each row of the FASTA sequence show the predictions from
three public-domain “aggregation calculators”. Obviously, no one
calculator accurately predicts only the experimental “hot spots”
as measured by HDX-MS—there are number of false positives and
negatives. Interestingly, a consensus of the three calculators does
reasonably well at predicting one of the hot spot peptide regions,
and such a consensus approach has proven useful in identifying

amino acids for replacement so as to inhibit aggregation in �-D
crystallin (Sahin et al., 2011). The inability of the calculators to
robustly predict the aggregation hot spots in aCgn notwithstanding,
the HDX-MS approach is promising for its ability to identify the hot
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Fig. 5. (A, top) Comparison of experimental “hot spots” from HDX-MS (red bold
letters) and predictions from selected “aggregation calculators” (overbars) for aggre-
gation of aCgn; (B, bottom) X-ray crystal structure of aCgn with experimental hot
spots highlighted in red to illustrate the burial of the hot spot region within the three
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Fig. 6. Comparison of TM , Tagg (defined in text), and b∗
2 for three IgG1 antibodies as

a  function of pH (data from Sahin et al. (2010)). Panel (A) is the same antibody as
in  Fig. 2 (denoted IgG1.4 in Sahin et al. (2010)), while (B) and (C) differ from (A) in
imensional folded structure. Adapted from Zhang et al. (2010). (For interpretation
f  the references to color in this figure legend, the reader is referred to the web
ersion of the article.)

pots from a purely experimental standpoint. This may  be useful
n future for the rational design of proteins that have lower “reac-
ivity” or inherent aggregation propensity, as well as for improved

echanistic modeling of the aggregation process—and ultimately
mproved prediction of aggregation rates.

. Prediction of aggregation rates

.1. TM and relative aggregation rates

As the discussion in Sec. 2 highlighted, TM can at least correlate
ith kobs. A simple analysis shows why TM alone should never be

xpected to be quantitatively predictive of kobs, as follows. In the
dealized case where the experimental TM is the temperature at

hich �Gun = 0 for the F–R transition in Fig. 1, �Gun as a function
f temperature can be expressed thermodynamically in terms of TM

s well as the corresponding enthalpy of unfolding evaluated at TM

denoted �H0) and the heat capacity of unfolding (�cp) (Becktel
nd Schellman, 1987; Weiss et al., 2009). Provided that one is not
oo close to TM, the value of kobs is expected to scale exponentially
ith �Gun (Roberts, 2007; Weiss et al., 2009). Therefore, kobs must
epend on at least TM, �H0, and �cp—although the dependence on
cp may  be negligible for practical purposes if one is not very far
elow TM (Weiss et al., 2009).
In practice, it is often not possible to determine equilibrium

nfolding values for TM, �H0, and/or �cp. As such, the most com-
on  practice is to simply, qualitatively rank formulations based on
their complementary-determining regions (denoted IgG1.1 and IgG1.3 in Sahin et al.
(2010)).  TM values are those for the largest endotherm from DSC, as this corresponds
to  unfolding of the most aggregation prone domain(s) for this protein (cf., Fig. 2).

TM, with higher TM hopefully correlating with lower kobs for a given
choice of formulation and sample temperature (Remmele et al.,
1998). Fig. 6 provides an example for which TM is reasonably pre-
dictive of relative aggregation rates. In this case, TM and the storage
temperature (Tagg) at which 1/kobs ∼ 1 h correlate well—increasing
TM by increasing pH corresponds to increasing Tagg. However, as
a counter-example Fig. 7 shows a comparison of TM and kobs (at
50 ◦C) for wild-type (WT) gamma-D crystallin and two of its point
mutations (S130P and M69Q) at a common set of solution condi-
tions. In this case, both point mutants have much lower kobs than
WT,  but this corresponds to an increase in TM for only M69Q. Sur-
prisingly, S130P is clearly the most stable in terms of kobs, but has

a TM much lower than that for WT  or M69Q. Together, Figs. 6 and 7
illustrate that although TM may  influence aggregation rates, it is at
best reflective of only one contribution to kobs – i.e., the contribu-
tion from monomer conformational stability. These examples and
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Fig. 7. Comparison of TM and kobs (50 ◦C) for wild-type (WT) and two point-mutants
(
g
s

t
w
t
t
r

5

d
p
i
a
t
(
r
t
a
t
d
t
r
t
f
g

5

c
a
a
t
2
w
t
e
i
w
t
c
n
a

b
r
t
p
a

M69Q and S130P) for �-D crystallin that were designed to differentially effect aggre-
ation rates via enchanced conformational stability or disruption of aggregation “hot
pots” in the sequence, respectively (data from Sahin et al. (2011)).

he discussion in Sec. 2 regarding difficulties in predicting a priori
hich TM for multi-domain proteins corresponds to unfolding of

he most aggregation-prone domain(s) help to highlight the limi-
ations of purely TM-based approaches for predicting aggregation
ates, or even qualitatively ranking of relative rates.

.2. Structure-based predictions and relative aggregation rates

As the discussion in Sec. 4 highlighted, structure-based pre-
ictors provide a possible means to rank mutations for a given
rotein that are likely to result in an increase or decrease in the

ntrinsic aggregation propensity, but the calculators assume that
ggregation prone sequences are solvent exposed and available
o interact strongly with another protein. Trout and co-workers
Chennamsetty et al., 2010) showed this could be a useful way to
ank different mutants’ relative aggregation propensity, provided
hat the aggregation-prone region(s) are primarily hydrophobic
nd structurally dynamic to be exposed on short time scales. In con-
rast, most of the multi-variate statistical “aggregation calculators”
o not account for tertiary or secondary structure. With the excep-
ion of the discussion below regarding interpolating aggregation
ates, structure-based predictions provide only qualitative predic-
ions of relative aggregation rates, as the local structure/sequence
or a given monomer does not provide direct information on aggre-
ation rates per se.

.3. B22, Z*, and relative aggregation rates

The discussion in Sec. 3 illustrated the conceptual link between
olloidal protein interactions and kobs, in that more repulsive inter-
ctions (large positive b∗

2 values and/or large absolute values of Z*)
re expected to lead to lower aggregation rates. Examples exist
hat appear to support (Chi et al., 2003b)  or contradict (Bajaj et al.,
006; Sahin et al., 2010) this reasoning. Fig. 6 provides an example
here aggregation rates increase with increasing b∗

2, rather than
he expected behavior. Additional results from that study (Sahin
t al., 2010) indicated that at the highest pH conditions, electrostat-
cs provided attractive interactions in some cases, yet aggregation

as slowest at those pH values. Although Z* was not determined in
hat case, the discussion in Sec. 3 highlighted that net charge alone
annot explain or predict attractive colloidal interactions, and thus
either Z* nor b∗

2 would be considered good indicators of relative
ggregation rates for this case.

However, the results in Fig. 6 should not be used to dismiss
∗
2 and/or Z*altogether as potentially useful indicators in some

espects regarding aggregation. It is helpful to recall that in order
o change b∗

2 and/or Z*, even if one does not consider changes in
rotein sequence, this requires changes in solvent conditions. Fig. 6
nd the discussion earlier in this section illustrate that changing pH
Pharmaceutics 418 (2011) 318– 333 327

resulting in changes in both b∗
2 and TM values – and these changed

in opposing directions in that example. Furthermore, b∗
2 changing

from positive to negative was found to be a good indicator of the
change from soluble aggregates to large, insoluble particles (Li et al.,
2010; Sahin et al., 2010). Although the latter also corresponded with
slower aggregation rates, this was likely a result of the increased TM

values—i.e., lower concentrations of (partially) unfolded monomers
available to aggregate in the first place.

Thus, it is advisable to consider multiple potential predictors of
relative aggregation rates whenever possible. As Figs. 6 and 7 high-
light, the difficulty then becomes how to interpret the predictions
when they conflict with one another. It is not surprising based on
Fig. 1 that changes in formulation or protein sequence can affect
more than one stage of aggregation simultaneously. Mechanistic
mathematical models exist that attempt to provide frameworks for
quantitatively combining the effects of some or all of the stages in
Fig. 1 (Andrews and Roberts, 2007; Li and Roberts, 2009; Pallitto
and Murphy, 2001; Lee et al., 2007b; Kendrick et al., 1998), but
none have yet been successful in predicting rates based purely on
biophysical parameters such as TM, b∗

2, Z*, or analogous quantities.
At the very least this follows because none of these physical quanti-
ties captures the essential dynamics or time scale(s) that govern the
rate-limiting step(s). This is perhaps the crux of why  none of the
approaches described thus far in this review provides more than
qualitative predictions or rankings for aggregation rates. Stated in
another way: if one wishes to predict aggregation rates, one cur-
rently needs to measure aggregation rates and use that information
as a key input to the predictions. This is a key principle that under-
lies the approaches in the next sub-section.

5.4. Extrapolation or interpolation to give quantitative rate
predictions

Quantitative rate predictions, to date, require either extrapola-
tion or interpolation of measured aggregation rates over a range
of T, p, and/or solvent composition. Fundamentally, this is perhaps
not surprising because it is currently not possible to experimentally
monitor or theoretically predict the rate coefficient(s) or charac-
teristic time scale(s) for the rate-limiting step(s) for aggregation.
Therefore any measured aggregation rates inevitably include con-
tributions from multiple steps simultaneously. With the exception
of the “aggregation calculators”, all of the approaches and models
discussed above are focused essentially on the reversible (if not pre-
equilibrated) processes of monomer unfolding and self-association
(Weiss et al., 2009), or on the thermodynamic favorability of aggre-
gate phase separation (Brummitt et al., 2011b;  Li et al., 2010; Sahin
et al., 2010). Therefore, none of the approaches earlier in this arti-
cle are able to provide a quantitative, predicted rate—i.e., an actual
number for kobs or an analogous quantity. One  requires experimen-
tal rate data to provide the information – even if only indirectly –
regarding the inherent or intrinsic kinetics of aggregation; thus the
need for interpolation or extrapolation of experimental rates, even
when used as part of mechanistic model (see below).

The structure-based methods that underlie the “aggregation cal-
culators” in Sec. 4 do not include or assess the actual kinetic process
of creating a nucleus or subsequent growth via monomer addition
or aggregate–aggregate association. Rather, they focus on multi-
variate statistical models that are regressed to existing database(s)
for experimental aggregation rates. The underlying models range
in complexity, spanning from simple sequence-property correla-
tors to those based on peptide-docking. Many do not provide rates
at all; those that do provide rates are able to do so by interpolating

the experimental rate data. Such an approach can, in principle, pro-
vide quantitative predictions of aggregation rates if the conditions
of interest (protein sequence/structure, T, p, and solvent compo-
sition) are similar to those of the experimental database against
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hich a given “calculator” was regressed to set its model parame-
ers. Unfortunately, the existing databases on peptide aggregation
gainst which current public-domain calculators have been “cal-
brated” include only a relatively small range of T, p, and solvent
omposition (Caflisch, 2006; Weiss et al., 2009). This is in addition
o the limitations noted in Sec 4 regarding the neglect of confor-

ational changes required to expose “hot spots” for aggregation,
nd the fact that the databases typically are based on experiments
imited to the detection of only amyloid aggregates and/or only
nsoluble (visible) aggregates. As such, it remains an outstanding
hallenge to accurately predict aggregation rates of foldable pro-
eins based on just the predictions from available “aggregation
alculators”.

The discussion of “aggregation calculators” not withstanding,
ny approach that involves interpolating experimental aggrega-
ion kinetics will constrain one to lie within the range of sample
onditions and time scales that are experimentally convenient (Li
t al., 2010). Given that target product shelf lives are typically multi-
ear, while product development decisions and choices of product
omposition typically must be made on much shorter time scales,
xtrapolation of shorter-time or “accelerated” aggregation rates
ecomes inevitable to some degree.

Extrapolation approaches can be roughly grouped into three cat-
gories: empirical, phenomenological, and mechanistic. Empirical
pproaches assume a simple, mathematically convenient depen-
ence of kobs on the physical parameters of interest, such as pH,
xcipient concentration(s), and temperature. A common but rel-
tively simple example of an empirical extrapolation is to use
tatistical design of experiments and/or multi-variate regression
o fit experimental kobs values to an empirical (often linear or
olynomial) function of the formulation variables of interest (Li
t al., 2010; Bai et al., 2003). One can then empirically extrapo-
ate to ranges of formulation conditions outside the data set used
o regress the model parameters. Unfortunately, such extrapola-
ions are often inaccurate because kobs depends in a non-linear
r otherwise complex manner on variables such as temperature,
H, protein concentration, and excipient concentration(s) (Li et al.,
010; Cleland et al., 1993; Wang, 2005).

Phenomenological extrapolation approaches are based on a
hysical model that may  be oversimplified, but at least provides

 rational functional form for the extrapolation. Perhaps the most
ommon example is Arrhenius extrapolation of higher-T, acceler-
ted rate data to lower-T, “real-time” storage conditions (Yoshioka
t al., 1994). Based on the idea of a single activated step controlling
he observed rate of aggregation, one would expect ln kobs to scale
inearly with the inverse of the absolute temperature—i.e., so-called
rrhenius behavior. If this approximation holds, then an Arrhenius
xtrapolation may  be sufficiently accurate to provide reasonable
redictions for kobs (Yoshioka et al., 1994). Even with a more com-
lex aggregation mechanism, Arrhenius behavior may  be observed

f one is only considering a relatively small range of temperatures,
articularly if one is able to focus on a relatively small extrapola-
ion from a base set of conditions that are already well characterized
Weiss et al., 2009). In general, a phenomenological extrapolation
s preferred over an empirical one, although both may  be insuffi-
ient to provide accurate predictions of kobs (Roberts et al., 2003;
leland et al., 1993; Perico et al., 2009).

In general, a mechanistic extrapolation will likely be needed if
obs depends on temperature, protein sequence, and/or formulation
ariables in a complex (i.e., “nonlinear”) manner. From a mecha-
istic perspective, the two most likely reasons for such complex
ehavior of kobs are: (1) the rate-limiting step or key steps in the

echanism of aggregation changes as a function of whatever vari-

ble is being extrapolated (Perico et al., 2009); (2) one or more
f the key steps in aggregation may  intrinsically have a strongly
on-linear dependence on the extrapolating variable. A simple
Pharmaceutics 418 (2011) 318– 333

example of (1) is a case in which aggregation proceeds through
a chemically altered intermediate under some conditions but not
others; for example, if disulfide shuffling or chain clipping popu-
lates the dominant aggregation-prone monomer form(s) at some
temperatures but not others (Perico et al., 2009; Rajan et al., 2010).
This results in net non-Arrhenius behavior if the competing rate-
limiting steps have significantly different activation energies—this
may  occur even if each of the competing pathways both behave in
an effectively Arrhenius manner, because the identity of the rate-
limiting step shifts, in this case, as temperature is lowered (Rajan
et al., 2010).

An example of (2) is one in which non-Arrhenius behavior occurs
because the apparent or effective activation energy includes the
enthalpy of unfolding. This is expected on long time scales for any
aggregation mechanism that requires some degree of monomer
unfolding, because the temperature dependence of �Gun is deter-
mined by �H0 and �cp (Becktel and Schellman, 1987). As a result,
as one lowers temperature the fraction of monomeric protein that
exists in an aggregation-prone (partially or fully unfolded) state
is expected to decrease, provided one does not cool so far as to
approach a cold-unfolding temperature. However, the magnitude
of the relative change in aggregation-prone monomer content will
be greater as one cools from near-but-below TM than it will be if one
is cooling at much lower T. For example, cooling by 5 C at T near TM

can decrease aggregation rates by orders of magnitude, while cool-
ing by the same increment at T � TM may  result in a much smaller
effect (Roberts et al., 2003; Weiss et al., 2009). This behavior is more
pronounced, the larger the value of �cp for the region(s) of the pro-
tein that unfolded in order to facilitate aggregation, and the larger
the range of T over which one extrapolates kobs (Weiss et al., 2009;
Roberts, 2007; Roberts et al., 2003).

In principle, such non-Arrhenius behavior for kobs can be
accurately predicted if one can obtain equilibrium unfolding ther-
modynamics as function of T, as was  done in at least one reported
case (Roberts et al., 2003). Unfortunately, in many cases it is not
practical to obtain such equilibrium information because aggre-
gation typically convolutes the interpretation of experimental
unfolding curves for aggregation-prone proteins (see also, Sec. 2)
unless one can work at sufficiently low protein concentrations to
suppress aggregation on the time scale of the unfolding exper-
iments (Roberts et al., 2003). Alternatively, one may be able to
generate kobs values across a large enough range of T to apply
phenomenological or mechanistic models to give quantitative pre-
dictions via interpolation (Kayser et al., unpublished; Brummitt
et al., unpublished). Thus, while mechanistic approaches can enable
more accurate extrapolations to predict aggregation rates, to date
they have been used primarily for only a posteriori interpretation
or justification of the strong dependence of kobs on variables such
as temperature, pH, and excipient levels. As such, no method is
currently accepted or in common use to quantitatively predict
aggregation rates for proteins, and this remains a long-standing
challenge in the field.

6. Outstanding challenges

As the discussion in Sec. 5 highlighted, accurate prediction of
aggregation rates as a function of protein sequence and/or sample
conditions is not yet generally possible in more than a qualita-
tive manner except for select examples (Roberts et al., 2003)—and
even from a qualitative perspective there are notable examples
where predictions are inaccurate (Bajaj et al., 2006; Sahin et al.,

2010, 2011). This section summarizes some of the key techni-
cal challenges that must be addressed with current or emerging
experimental and/or theoretical approaches, and that may  then
ultimately lead to improved predictability of aggregation rates.
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.1. Local unfolding & identification of aggregation-prone regions

As the discussion in Sec. 1, 2, and 4 highlighted, aggregation of
oldable proteins appears to be driven by strong favorable inter-
rotein contacts between relatively small stretches of amino acids,
nd it is often not clear where these stretches actually exist in a
iven protein. The available “aggregation calculators” make pre-
ictions for the location of such sequences, but there are few
xperimental examples where those predictions have been vali-
ated for foldable proteins (Ivanova et al., 2006; Zhang et al., 2010;
ahin et al., 2011). Even if the predicted sequences are correct, there
emains the question of whether and how they become exposed
nd available to interact with sequences on other proteins. For
ulti-domain proteins, unfolding of a domain per se may  not be

eeded, as simply disrupting the domain–domain interface may  be
ufficient (Worn and Pluckthun, 2001).

If aggregation is much slower than the conformational dynam-
cs that reveal aggregation-prone sequences for a given protein,
hen the thermodynamics of unfolding of that region will deter-

ine the fraction of monomers in solution that are available, on
verage, as aggregation-prone or “reactive” species in Fig. 1. Cur-
ently, the large majority of available experimental techniques to
easure unfolding free energies can do so only in a relatively global

ense. That is, they at best provide unfolding free energies for large
ooperative units or domains of a protein, or for the entire protein
tself (Freire et al., 1992; Worn, 2001; Ionescu et al., 2008; Flaugh
t al., 2005a,b). As such, they provide information regarding the
elative amount of a given conformational state in a thermody-
amic sense, but that state is composed of a statistical ensemble
f structures—not all of which may  reveal the aggregation-prone
equence(s) to similar degrees.

Potential experimental approaches to probing spatially resolved
local unfolding” in proteins include NMR  and/or mass spectrom-
try coupled with HD exchange as a function of solvent conditions
nd/or temperature, as well as a range of chemical ligands and/or
yes that maybe more or less sensitive to different types of local
onformational changes. To the best of the authors’ knowledge,
hese techniques have not yet been used to monitor or character-
ze aggregation-prone regions in monomers prior to aggregation,
lthough they have been used for a posteriori analysis of aggregate
tructures to help identify key contacts and infer the location of
hot spots” in the parent monomers (Paravastu et al., 2008; Zhang
t al., 2010; Tobler and Fernandez, 2002), and in screening formu-
ation conditions to try to minimize local unfolding (Maas et al.,
007; Demeule et al., 2009; Gabellieri and Strambini, 2006). Com-
utational tools also exist that attempt to predict local unfolding
ree energies (Hilser et al., 2006), but to the best of the authors’
nowledge these have not yet been used to predict or correlate
ggregation rates.

.2. Improved understanding of nucleation mechanisms

The discussion earlier in this section highlighted that no avail-
ble technique – experimental or computational – has been shown
enerally to probe the event(s) of nucleation directly. In many
ases, experimental aggregation rates are too slow for the rate-
imiting step to be either unfolding (stage 1 in Fig. 1) or diffusion of

olecules to reach each other as part of reversible self-association
stage 2 in Fig. 1). That is, the characteristic time scales for unfolding
r for diffusion of proteins in solution are typically much shorter
han storage of times of pharmaceutical interest; in such cases,
nfolding and/or reversible self-association steps are expected to

re-equilibrate, and it is the thermodynamics rather than the kinet-

cs of those steps that is more relevant to predicting kobs. A simple
est to help locate the rate-limiting step at a qualitative level is
he dependence of shelf life or kobs on initial protein concentra-
Pharmaceutics 418 (2011) 318– 333 329

tion (c0). Unfolding-limiting aggregation requires kobs have little
no dependence on c0, although at high protein concentrations kobs
being independent of c0 can also occur when unfolding is not rate
limiting (Roberts, 2007).

Independent of exactly where the rate-limiting step(s) lie in
Fig. 1, the key intermediate(s) in the process of nucleation are typ-
ically too transient and poorly populated to be isolated or detected
directly in experiment. Furthermore, the proteins in question are
too large to be viable candidates for probing nucleation in atomistic
detail via theory and simulation – current computational capabili-
ties limit such studies to only relatively small polypeptides (Zanuy
et al., 2003). Presently, one is often limited experimentally to only
indirectly deducing the stoichiometry of the nuclei via the depen-
dence of aggregation rates on protein concentration (Ferrone, 1999;
Andrews and Roberts, 2007; Brummitt et al., 2011b; Chi et al.,
2003b), and inferring the likely location of key regions that are
involved in nucleation via a posteriori structural and/or mutational
analysis of the “downstream” aggregates as nuclei grow (Zhang
et al., 2010; Ignatova et al., 2007). The inability to either measure
or theoretically predict the dynamics of the rate-limiting step(s) in
nucleation is perhaps the largest hurdle to truly a priori prediction
of aggregation rates. This is even further complicated if nucleation
occurs at the liquid–air or one of the liquid–solid interfaces that
therapeutic proteins likely encounter during production, shipping,
and storage. Measuring or predicting the effects of surface adsorp-
tion on global or local unfolding, as well understanding the role that
surfaces plays in nucleating new aggregates in general remains a
major outstanding hurdle (see also, next section).

6.3. Aggregation mediated by bulk surfaces

In much of the above discussion, the process of aggregate forma-
tion was deliberately not presented with a bias towards whether
any or all of the steps in Fig. 1 occur in bulk solution or at
liquid–vapor or liquid–solid interfaces. In principle, they can each
occur in bulk and at interfaces. However, most of the approaches
used to date for predicting aggregation rates implicitly assume
bulk solution measurements and quantities are relevant—e.g., TM

and B22. The potential importance of the liquid–solid, liquid–liquid,
and/or liquid–vapor interface for protein aggregation is illustrated
by the increasing number of empirical or phenomenological stud-
ies that show aggregation can be accelerated by using agitation to
entrain air (Kiese et al., 2008) or to increase exposure to solid–liquid
interfaces (Biddlecombe et al., 2007; Jiang et al., 2009), as well by
spiking with solid materials (Bee et al., 2009; Jiang et al., 2009)
or insoluble liquids (Thirumangalathu et al., 2009), and that these
effects can be mitigated by addition of surfactants that presumably
compete for at least some of those same interfaces (Wang, 2005).

However, the mechanism(s) for surface-mediated aggregation
are even less well understood than those for bulk aggregate for-
mation. At a qualitative level, it may  be reasonable to assume that
surface-mediated aggregation will involve some or all of the steps
in Fig. 1, combined with additional steps for transport of proteins
to/from the surface. Even if this is the case, prediction of aggregation
rates remains hampered for a number of reasons. One of which is
the practical question of how to design bench-scale accelerated sta-
bility experiments that provide a surface-mediated driving force for
aggregation that is similar to that experienced by proteins during
manufacture, shipping, and/or storage—e.g., including considera-
tions such as ratios of head-space to liquid volume, surface area to
total volume ratio, total container surface contact of the liquid, and
the chemistry and/or roughness of the surface (Kiese et al., 2008;

Biddlecombe et al., 2007).

Another is the experimental challenge of monitoring the con-
formational state and/or oligomerization state(s) of proteins at
the interface between two  phases. Experimentally, there are very
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ew available techniques that can unambiguously probe the con-
ormational state(s) and/or spatial arrangements of proteins at
olid–liquid and vapor–liquid interfaces. From a theoretical per-
pective, simulating just the equilibrium adsorption of even small
eptides at the bulk interface between two phases is itself a chal-

enge if one is interested in molecular details (Miller et al., 2009).
imilarly, it is computationally challenging to simulate just the self-
ssociation of folded proteins at the interface of two-phase systems
Choutko et al., 2011); extending this to two or more dynamically
exible proteins undergoing unfolding and aggregation simultane-
usly is presently untenable with conventional approaches. Given
hat it is currently unknown where the rate-limiting step(s) lie for
urface-mediated aggregation, accurate prediction of aggregation
ates in such cases will first require further advances in the com-
unity’s understanding of the underlying mechanisms compared

o the seemingly simpler case of bulk aggregation.

.4. Aggregation and self-association for proteins at high
oncentrations

The past decade or so has seen a dramatic increase in the number
f monoclonal antibody (MAb) or derivative candidates in prod-
ct development (Reichert et al., 2005). Often, these molecules
an achieve rather high solubilities (>100 g L−1) and require rela-
ively high doses (∼mg kg−1) to be clinically effective. These factors,
ombined with a practical need to deliver subcutaneous doses for
hronic indications with volumes of no more than approximately

 mL  for each injection, leads to many potential products being
eveloped at much higher concentrations (∼102 g L−1) than was
istorically the case. This poses a number of challenges from the
erspective of predicting aggregation rates.

At a minimum, there are the practical constraints of available
xperimental assays for monitoring aggregation. The large majority
f analytical tools were developed over the latter half of the twen-
ieth century, with a view towards use with much lower protein
oncentrations (∼1 g L−1 or below). This is potentially problematic
ecause commercially available instruments then require samples
o be diluted many fold before they can be assayed, and dilution

ay  then drive “weakly bound” aggregates, if present, to dissociate
efore they can be detected and characterized. If one is concerned
ith only net-irreversible aggregates, then the question of dilution

s less of a concern from the standpoint of monitoring the rates of
ggregation.

However, if one is seeking to predict aggregation rates via
echanistic approaches focused on unfolding and protein–protein

nteractions (cf. Sec. 2 and 3) then this may  again be problematic
ecause so-called crowding effects become important for folding
nd self-association thermodynamics and dynamics at high pro-
ein concentrations (Zhou et al., 2008), as well as the fact that
he proteins themselves can become the dominant (and highly

ultivalent) counter-ion species (Gokarn et al., 2008). In practi-
al terms, this means that values of biophysical properties such as
M, B22, and Z* measured at low concentrations may  not be useful
s predictive tools at much higher concentrations, and it would be
eneficial to have experimental approaches to measure changes in
onformational stability and protein–protein interactions in high-
oncentration protein solutions. The former will likely prove to
emain problematic, as measuring unfolding thermodynamics is
roblematic at high concentrations because of the competition
etween refolding and aggregation that greatly favors aggregation
s concentration is increased (Privalov and Potekhin, 1986; Roberts
t al., 2003). The latter may  be achievable with available scatter-

ng techniques that are not limited to only dilute conditions (Velev
t al., 1998; Minton, 2007; Fernandez and Minton, 2009; Blanco
t al., in preparation), but presently such techniques are not in
ide-spread use. Some of the spectroscopic techniques such as IR,
Pharmaceutics 418 (2011) 318– 333

Raman, and NMR  are suitable for high concentration assays, how-
ever, as discussed earlier, these may  not have adequate sensitivity
to detect small fractions of non-native species.

6.5. Improved means to determine accelerated aggregation rates

Finally, if one adopts the philosophy that aggregation rates
are most effectively predicted by rationally extrapolating from
accelerated conditions – independent of whether an empirical,
phenomenological, or mechanistic extrapolation is employed –
then there are number of outstanding challenges for practical pre-
dictions that follow from the discussions above. The first is the
question of what kind of accelerated method does one employ,
and what accelerating variable(s) are most predictive. For exam-
ple, should one heat to accelerate aggregation, and if so what is
the relevant temperature range in order to be predictive? Should
one instead agitate solutions to accelerate aggregation, and if so
what mechanical configuration should be used—e.g., shaking vs.
vortexing vs. sparging, etc.? There is currently no consensus in
the community, and no unambiguous examples from which to
draw general answers to these important questions. It is gener-
ally recognized however, that because proteins aggregate through
various routes depending on the applied stress, one needs a series
of accelerated conditions to attempt to predict different types of
aggregation pathways relevant to producing a stable, safe and effi-
cacious dosage form. Of course, these questions are intimately tied
to understanding the mechanisms of aggregation – as the field con-
tinues to progress in those areas, so too will our ability to better
design predictive experiments.

7. Summary

Control of aggregation rates is a common challenge during
development of protein-based pharmaceuticals and other biotech-
nology products. Most current approaches can be grouped into a
number of categories depending on whether they focus primar-
ily on: (i) unfolding and higher-order-structure perturbations, (ii)
reversible self-association, (iii) intrinsic “hot spots” or aggregation
propensity of the polypeptide sequence and structure, or (iv) ratio-
nal interpolation or extrapolation of accelerated aggregation rates.
Approaches (i) to (iii) are more directly tied to the current under-
standing or assumptions regarding the mechanisms of aggregation,
but are limited in their ability to provide more than qualitative pre-
dictions. Approaches in category (iv) naturally provide quantitative
predictions but the accuracy of those predictions often relies heav-
ily on the underlying mechanistic understanding. As such, it is likely
that approaches that combine features of all of the above will prove
most lucrative in the near term. Truly a priori predictions will likely
remain an unanswered challenge until the process of nucleation is
directly accessible for study at a molecular level in both experiment
and theory/simulation.

Fig. 8 provides an overview and summary of the approaches
reviewed here, along with their qualitative vs. (semi-)quantitative
relationship to aggregation rates, as well as rough estimates
regarding relative resource/time/material requirements (including
computational burden). Rather than argue that there is an optimal
choice or recipe of how to combine the different approaches in a
standardized platform, it is important to highlight that aggregation
studies serve multiple purposes during the development of pro-
tein products, and these purposes differ depending on the stage
one considers within the development process—e.g., due to limita-

tions of material and/or other resources, different needs of clinical
development, and different regulatory requirements at different
stages (Weinberg et al., 2010). As such, the pros and cons of each
approach should be weighed; a suitable combination of the avail-
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Fig. 8. Schematic overview of the major approaches reviewed here. Color coding
summarizes whether approaches in a given category tend to be qualitative (gray),
semi-quantitative (orange/red), or quantitative (blue) in terms of the relationship
between the measured or predicted quantities and aggregation rates. The arrows
indicate relatively high (up arrow) or low (down arrow) time, resource, and/or
expense associated with the given approach. Cases where more than one arrow
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s  referred to the web  version of the article.)

ble approaches is advisable to ensure an acceptable product, based
n a balance between quantitative accuracy, the time-frame(s) on
hich aggregation rate predictions are needed, and the availability

f resources and material.
There are a number of additional outstanding challenges for

he community regarding mechanistic understanding of aggrega-
ion so as to enable more accurate rate predictions. These include
etter experimental and theoretical tools: to probe local unfolding
nd identify aggregation-prone regions that may  become solvent
xposed only transiently and infrequently; to work with high-
oncentration solutions where many current assays are not directly
iable; to treat the process of aggregation mediated by liquid–solid,
iquid–liquid, and/or liquid/vapor interfaces; and to design the

ost relevant and predictive accelerated stability studies. Although
obust prediction of aggregation rates remains an outstanding chal-
enge in the field, it also remains an area of active research, and one
hat will continue to benefit from both fundamental and applied
cience and engineering spanning across a number of fields.
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